CW EC-QCL-based sensor for simultaneous detection of H2O, HDO, N2O and CH4 using multi-pass absorption spectroscopy
نویسندگان
چکیده
A sensor system based on a continuous wave, external-cavity quantum-cascade laser (CW EC-QCL) was demonstrated for simultaneous detection of atmospheric H2O, HDO, N2O and CH4 using a compact, dense pattern multi-pass gas cell with an effective path-length of 57.6 m. The ECQCL with a mode-hop-free spectral range of 1225-1285 cm operating at ~7.8 μm was scanned covering four neighboring absorption lines, for H2O at 1281.161 cm, HDO at 1281.455 cm, N2O at 1281.53 cm and CH4 at 1281.61 cm. A first-harmonic-normalized wavelength modulation spectroscopy with second-harmonic detection (WMS-2f/1f) strategy was employed for data processing. An Allan-Werle deviation analysis indicated that minimum detection limits of 1.77 ppmv for H2O, 3.92 ppbv for HDO, 1.43 ppbv for N2O, and 2.2 ppbv for CH4 were achieved with integration times of 50-s, 50-s, 100-s and 129-s, respectively. Experimental measurements of ambient air are also reported. ©2016 Optical Society of America OCIS codes: (280.3420) Laser sensors; (010.1280) Atmospheric composition; (300.6340) Spectroscopy, infrared; (140.5965) Semiconductor lasers, quantum cascade. References and links 1. R. K. Pachauri, M. Allen, V. Barros, J. Broome, W. Cramer, R. Christ, J. Church, L. Clarke, Q. Dahe, and P. Dasgupta, “Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change” (2014). 2. Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015). 3. D. Noone, “Pairing measurements of the water vapor isotope ratio with humidity to deduce atmospheric moistening and dehydration in the tropical midtroposphere,” J. Clim. 25(13), 4476–4494 (2012). 4. S. A. Montzka, E. J. Dlugokencky, and J. H. Butler, “Non-CO2 greenhouse gases and climate change,” Nature 476(7358), 43–50 (2011). 5. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39(24), 4425–4430 (2000). 6. D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3325–3335 (2004). 7. M. Jahjah, W. Ren, P. Stefański, R. Lewicki, J. Zhang, W. Jiang, J. Tarka, and F. K. Tittel, “A compact QCL based methane and nitrous oxide sensor for environmental and medical applications,” Analyst (Lond.) 139(9), 2065–2069 (2014). 8. G. Hancock, J. Van Helden, R. Peverall, G. Ritchie, and R. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94(20), 201110 (2009). 9. J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CWDFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014). 10. W. Ren, W. Jiang, and F. K. Tittel, “Single-QCL-based absorption sensor for simultaneous trace-gas detection of CH4 and N2O,” Appl. Phys. B 117(1), 245–251 (2014). #262458 Received 4 Apr 2016; accepted 29 Apr 2016; published 3 May 2016 © 2016 OSA 16 May 2016 | Vol. 24, No. 10 | DOI:10.1364/OE.24.010391 | OPTICS EXPRESS 10391 11. Y. Cao, N. P. Sanchez, W. Jiang, W. Ren, R. Lewicki, D. Jiang, and R. J. Griffin, “Multi-pass absorption spectroscopy for H2O2 detection using a CW DFB-QCL,” Adv. Opt. Technol. 3, 549–558 (2014). 12. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J.-M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769– 777 (2005). 13. G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008). 14. X. Chao, J. Jeffries, and R. Hanson, “Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser,” Appl. Phys. B 106(4), 987–997 (2012). 15. K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013). 16. L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23(15), 19821–19830 (2015). 17. H. Li, A. Farooq, J. Jeffries, and R. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2-3), 407–416 (2007). 18. L. Rothman, I. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. Bernath, M. Birk, L. Bizzocchi, V. Boudon, and L. Brown, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4– 50 (2013). 19. X. Liu, X. Zhou, A. Feitisch, and G. Sanger, “Pressure-invariant trace gas detection,” U.S. Patent No. 7,508,521 (2009). 20. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006). 21. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009). 22. D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001). 23. M. Schneider, F. Hase, and T. Blumenstock, “Ground-based remote sensing of HDO/H2O ratio profiles: introduction and validation of an innovative retrieval approach,” Atmos. Chem. Phys. 6(12), 4705–4722 (2006). 24. S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell, E. J. Dlugokencky, P. Bergamaschi, D. Bergmann, D. R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E. L. Hodson, S. Houweling, B. Josse, P. J. Fraser, P. B. Krummel, J.-F. Lamarque, R. L. Langenfelds, C. Le Quéré, V. Naik, S. O’Doherty, P. I. Palmer, I. Pison, D. Plummer, B. Poulter, R. G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D. T. Shindell, I. J. Simpson, R. Spahni, L. P. Steele, S. A. Strode, K. Sudo, S. Szopa, G. R. van der Werf, A. Voulgarakis, M. van Weele, R. F. Weiss, J. E. Williams, and G. Zeng, “Three decades of global methane sources and sinks,” Nat. Geosci. 6(10), 813–823 (2013). 25. I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014). 26. L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
منابع مشابه
Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL
A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and ...
متن کاملA compact QCL based methane and nitrous oxide sensor for environmental and medical applications.
A methane (CH4) and nitrous oxide (N2O) sensor based on a sensitive, selective and well established technique of quartz enhanced photoacoustic spectroscopy (QEPAS) was developed for environmental and biomedical measurements. A thermoelectrically cooled (TEC) distributed feedback quantum cascade laser (DFB-QCL), capable of continuous wave (CW) mode hop free emission in the 7.83 μm wavelength ran...
متن کاملProfiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances
Thermal infrared (IR) radiances measured near 8 microns contain information about the vertical distribution of water vapor (H2O), the water isotopologue HDO, and methane (CH4), key gases in the water and carbon cycles. Previous versions (Version 4 or less) of the TES profile retrieval algorithm used a “spectral-window” approach to minimize uncertainty from interfering species at the expense of ...
متن کاملQEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL.
An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a state-of-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located a...
متن کاملSimultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser.
A continuous wave (CW) quantum cascade laser (QCL) based absorption sensor system was demonstrated and developed for simultaneous detection of atmospheric nitrous oxide (N(2)O), methane (CH(4)), and water vapor (H(2)O). A 7.73-µm CW QCL with its wavelength scanned over a spectral range of 1296.9-1297.6 cm(-1) was used to simultaneously target three neighboring strong absorption lines, N(2)O at ...
متن کامل